РОССИЙСКАЯ АКАДЕМИЯ НАУК

Институт металлургии и материаловедения им. А.А. Байкова РАН **80 лет**

Москва

ИМЕТ РАН

2018 г.

УДК 669.1; 546.1; 546.3

Институт металлургии материаловедения им. А.А. Байкова РАН – 80 лет. Сборник научных трудов. М.: Интерконтакт Наука, 2018, 644 с.

ISBN 978-5-902063-58-2

Сборник подготовлен в связи с 80-летием создания Института Металлургии и материаловедения им. А.А, Байкова Российской академии наук. В статьях содержатся материалы по основным направлениям научной деятельности в области металлургии черных, цветных и редкоземельных металлов, материаловедения металлических, керамических, нанокристалических, композиционных материалов, развития методов исследования состава, структуры и свойств материалов.

Материалы сборника могут представлять интерес для ученых и сотрудников научно-исследовательских и учебных институтов и университетов, промышленных предприятий, работающих в области металлургии черных, цветных и редких металлов, материаловедения неорганических материалов и методов исследования.

Редакционная коллегия

Академик К.А. Солнцев (ответственный редактор), академик О.А. Банных (зам. Ответственного редактора), академик В.М. Бузник, академик В.М. Иевлев, академик Ю.В. Цветков, чл.-корр. РАН М.И. Алымов, чл.-корр. РАН С.М. Баринов, чл.-корр. РАН Г.С. Бурханов, чл.-корр. РАН Григорович К.В., чл.-корр. РАН А.Г. Колмаков, чл.-корр. РАН В.С. Комлев, д.ф.-м.н. С.В. Симаков, к.т.н. О.Н. Фомина (ответственный секретарь)

ISBN 978-5-902063-58-2

© ИМЕТ РАН, 2018

Геометрическое конструирование кристаллических решеток новых изоструктурных карбида бора b14c8 и субнитрида бора b18n4 с политипией по нескольким непараллельным плоскостям.

И.В. Дуденков, К.А. Солнцев

ИМЕТ РАН

E-mail: ivdudenkoff@mail.ru

DOI: 10.30791/978-5-902063-58-2-226-239

На основе соединения клозо-икосаэдрических кластеров ${B_{12}}^{-2}$ или В₁₀С₂ по внешним валентностям через трехцентровые связи диборановых звеньев В₂ в полимерные стержни с достройкой оставшихся свободных пропаноподобными валентностей группами тетраэдрическикоординированных атомов NBN^{+1} или C_3 , геометрически сконструировано семейство кристаллических решеток со стехиометрией $(B_{12}^{-2})(B_2)_2(BN_2^{+1})_2 =$ $B_{18}N_4$ или $(B_{10}C_2)(B_2)(C_3)_2 = B_{14}C_8$, почти лишенных геометрических напряжений. Среди политипов семейства есть и такие, в которых вместо икосаэдрических и диборановых групп присутствует бесконечная невыпуклая дельтаэдрическая лента из нидо-декаборатных кластеров типа B₁₀H₁₄⁻², обобществляющих исходно протонированные ребра, но с возможностью области гомогенности вплоть до перехода половины кластеров от арахно- к нидо-балансу. Для большинства простейших политипов по разным направлениям политипии установлены пространственные группы, вычислены параметры решеток и координаты атомов. Установлено, что на основе упомянутых стержней могут быть построены и кристаллические решетки с рядом других составов, также почти лишенные геометрических напряжений.

Введение

Структуры известных форм бора [1] и большинства известных высших боридов и других высокобористых соединений представляют собой каркасы на основе соединенных между собой икосаэдров и реже (только в присутствии металлов, занимающих полости структуры) других борановых фрагментов [2, 3]. В ряду пространственно-ароматических клозо-боранов $B_nH_n^{-2}$ (синтезированы для n от 6 до 12, рассчитаны и за пределами этого интервала), икосаэдрические $B_{12}H_{12}^{-2}$ известны как самые термодинамически стабильные [4, 5]. Икосаэдрические кластеры устойчивее других настолько,

что обычно реализуются в структурах боридов даже несмотря на то, что при этом часто неизбежны значительные геометрические напряжения. Такие напряжения могут быть валентными и (или) угловыми. Валентные напряжения – растяжения или сжатия части связей – преобладают, например, в структурах YB₆₆ и β-ромбоэдрического бора, содержащих фрагмент из центрального икосаэдра, соединенного двухцентровыми связями с 12 внешними икосаэдрами, связанными дополнительно между собой двадцатью двухцентровыми связями. Такой структурный фрагмент является проекцией на трехмерное пространство полуправильного выпуклого четырехмерного политопа, полученного усечением правильного четырехмерного политопа {3, 3, 5} по всем вершинам. При этом геометрически связи центрального икосаэдра с внешними неизбежно существенно сжаты, а связи внешних икосаэдров между собой – наоборот, растянуты. Угловые напряжения – отклонения внешних связей икосаэдров от идеальных направлений – преобладают в структурах α -тетрагонального и α -ромбоздрического бора, в остальных формах бора вклад геометрических напряжений обоих типов сопоставим.

На основе геометрического анализа мы сделали вывод, что при соединении икосаэдров через структурный фрагмент диборана В₂Н₆ по его мостиковым валентностям геометрические напряжения в структуре можно свести к минимуму. Такие связи геометрически удобны и для борных кластеров меньших размеров. Например, в неопубликованной работе сдвигом на полпериода базальных слоев структуры YB₄, содержащей октаэдры B₆⁻², такая решетка нами была геометрически сконструирована LiB₄. Впоследствии та же структура была независимо найдена другими [6] с помощью эволюционного компьютерного алгоритма USPEX. Когда соавтор этой работы А. Оганов 1 марта 2017 г. выложил на своей Интернет-странице ссылку на эту свою свежую публикацию, автор настоящей работы И. Дуденков быстро сделал фотоснимки своих неопубликованных рукописных чертежей с выводом общего принципа строения и расчетом геометрии другого политипа LiB₄ и разместил в комментарии на Интернет-странице А. Оганова [7] как подтверждение того, что к одной и той же структуре оба автора пришли независимо. До этого работы автора с теоретическими предсказаниями новых веществ систематически не принимали в печать, видимо, в связи с отсутствием в России признанных специалистов по кристаллохимическому предсказанию новых веществ, поэтому работоспособность авторских подходов по предсказанию новых веществ приходится доказывать такими необщепринятыми способами.

Различие между формами LiB₄, предсказанными в ранней неопубликованной работе И.В. Дуденкова и позже А. Огановым и др. в работе [6], сводится к тому, что в предсказанной А. Огановым и др. орторомбической форме половина диборановых звеньев B₂ повернута на 90°, что приводит к увеличению полостей, вмещающих катионы лития и, соответственно, к уменьшению плотности.

При связывании икосаэдров с мостиковыми валентностями диборановых групп есть возможность связать два соседних икосаэдра не только одной, но и одновременно двумя или тремя диборановыми группами. В настоящей работе изучен случай соединения икосаэдров через пары диборановых групп. Разумеется, внутри каждого из икосаэдров обе валентности, занятые обеими диборановыми группами, соединяющими его с соседним икосаэдром, находятся в орто-расположении. Обе диборановые группы, связывающие каждую пару смежных икосаэдров, могут быть соединены между собой через два тетраэдрически координированных атома Х1. Каждый из атомов Х1, в свою очередь, через два мостиковых тетраэдрически-координированных атома Х2 может быть соединен с обоими соседними икосаэдрами. Таким образом, мы сконструировали жесткие стержни состава $(B_{12}^{-2})(B_2)_2(X2-X1-X2)_2$. При моделировании на чертежах и в программе HyperChem [8] молекулярно-механическим методом MM+ оказалось, что такие стержни могут быть соединены между собой множеством кристаллографически различных политипических способов с полным взаимным совмещением внешних валентностей. Таким образом, при переходе к объему добавления дополнительных атомов не требуется, и стехиометрия стержня является стехиометрией соединения. Поэтому необходимо найти возможные способы компенсации отрицательного заряда борного икосаэдра. Простейший способ состоит в замене части атомов бора в икосаэдре на углерод с переходом к карборановым кластерам. Такие карбораны $C_2B_{10}H_{12}$ [9] известны как экстремально термически устойчивые по сравнению с другими водородсодержащими веществами молекулярного строения, из трех изомеров наиболее устойчив пара-изомер, мета-изомер ему слегка уступает, а устойчивость орто-изомера со связью С-С уже существенно ниже. При этом межикосаэдрические цепочки тетраэдрическикоординированных атомов Х2-Х1-Х2 являются электрически нейтральными и могут быть представлены углеродными цепочками СЗ из молекул пропана образом, МЫ приходим к C_3H_8 . Таким стехиометрии соединения $(B_{10}C_2)(B_2)_2(C_3)_2 = B_{14}C_8.$

Если же икосаэдрические кластеры будут полностью борными, каждая группа X2-X1-X2 должна нести заряд +1. Случай, когда один из атомов этой группы азот, а остальные углероды, непредпочтителен ввиду термодинамической метастабильности также содержащих связи C-N нитридов углерода (C₃N₄, C₂N₂ и других), отсутствующих на диаграмме получаемых состояния И только косвенными методами. Лучшей альтернативой является чередование атомов N-B-N в трехатомной цепочке. При этом заряд для изоэлектронности пропану должен быть равен +1, и такие катионы $BH_2(NH_3)_2^{+1}$ хорошо известны, наряду с $B_{12}H_{12}^{-2}$ обладают редкой для бороводородов химической стойкостью к кислым средам и образуют соли, в том числе и с анионом $B_{12}H_{12}^{-2}$. Содержащиеся в таких катионах связи B-N такие же, как и в экзотермичном нитриде бора BN, что энергетически благоприятно. Таким образом, состав теоретически сконструированного нами соединения следующий: $(BN_2^{+1})_2(B_{12}^{-2})(B_2)_2 = B_{18}N_4$.

При геометрическом конструировании соединений В₁₄С₈ и В₁₈N₄ длины связей взяты из ближайших известных структурных аналогов – простейших веществ, содержащих те же типы химических связей: длины связей внутри икосаэдров – из B₁₂H₁₂⁻² (B-B 1,78Å) и C₂B₁₂H₁₂, связь B-N 1,53Å с борным икосаэдром - из B₁₂H₁₀(NH₃)₂·0,5H₂O [10], остальные связи В-N 1,56Å – из кубического нитрида бора ВN. Связи В-С с икосаэдром 1,58Å взяты из структур солей B₁₂(CH₃)₁₂⁻² [11], а остальные длины связей С-С 1,54Å – из структуры алмаза С. Длина связи в диборановой группе взята равной 1,72Å наподобие диборану, а между диборановой группой и икосаэдром 1,96Å – промежуточной между непротонированным ребром В-В молекулы B₃H₇(NH₃) 1,84Å и межикосаэдрической трехцентровой связью 2,00Å в α-ромбоэдрическом боре, ближе к последней. Длина связи между икосаэдрическим бором и бором в позиции X2 взята равной 1,75Å по аналогии co связями между икосаэдрическим И тетраэдрическикоординированным атомами в структуре Mg₂B₁₄ и изоструктурных боридах. При MM+ моделировании в HyperChem трехцентровые связи диборановых фрагментов моделировались псевдоатомами LP (пара электронов), а внутри борановых фрагментов обоих сортов связи подразумевались обычными. При этом длины связей получались очень похожие на взятые нами для расчетов. Ввиду того, что в HyperChem отсутствуют опции по выделению из моделей элементарных ячеек и другие опции для получения кристаллографической информации в стандартных форматах, структурную информацию для предсказанных соединений (пространственные группы, параметры решеток,

координаты атомов в стандартных установках) было удобнее вычислить вручную геометрически, исходя из постулированных длин связей.

Первоначально были рассчитаны геометрические параметры решеток $B_{18}N_4$. Геометрические напряжения в сконструированных решетках оказались очень малы, при этом структуры выгодно отличаются от соединений типа карбида бора отсутствием энергоемких линейно-координированных межикосаэдрических атомов бора. В изоструктурных этим формам B₁₈N₄ формах $B_{14}C_8$ возможны различные варианты замещения бора на углерод в Подразумевалось, что по электростатическим икосаэдрах. причинам исключены варианты размещения углерода в икосаэдрических позициях, образующих внешнюю трехцентровую связь, а по всем остальным позициям бор и углерод распределены в равной пропорции. Мы еще не конструировали сверхструктур с полным упорядочением углерода. Вычисленные кристаллографические параметры проверены на адекватность визуально просмотром и обмером созданных с этими параметрами файлов формата .cif в являющейся интерфейсом программе Mercury [12], Кембриджской структурной базы данных ССDС.

Таблица 1.

Вы телетные параметры решеток полиморфных модификации В 1814.										
вещество	сингония	Простр.	а	b	с	β	Z	d, г/см ³		
		гр.								
α -B ₁₈ N ₄	Мон.	C2/m	9.3558	5.4016	6.2372	109.472	2	2.800		
β -B ₁₈ N ₄	Орт.	Pmmn	5.4016	8.8207	6.2372	-	2	2.800		
γ -B ₁₈ N ₄	Гекс.	P3 ₁ 21	5.4016	-	17.6414	-	3	2.800		
$\delta - B_{18} N_4$	Мон.	C2/c	6.2372	10.8035	9.3690	109.472	4	2.796		
$\epsilon\text{-}B_{18}N_4$	Орт.	Fddd	17.6408	10.8458	6.2372	-	8	2.789		

Вычисленные параметры решеток полиморфных модификаций B₁₈N₄

Таблица 2.

Вычисленные координаты атомов в структурах полиморфных модификаций B₁₈N₄ .

Вещество	Позиция	Элемент	Х	у	Z	Заняо-	Кратность	Символ
						сть		Вайкофф
α -B ₁₈ N ₄	B1	В	0.1632	0	-0.0611	1	4	i
	B2	В	0.1009	0.2666	0.05045	1	8	j
	B3	В	0.1632	0	0.2243	1	4	i
	B4	В	0	0.1648	0.2309	1	8	j
	B5	В	0.0975	0.2635	0.54875	1	8	j
	B6	В	0.2129	0	0.6048	1	4	i
	N1	Ν	0.1958	0.5	0.13365	1	4	i
	N2	Ν	0.1958	0.5	0.5622	1	4	i
β -B ₁₈ N ₄	B1	В	0.25	0.4132	-0.0177	1	4	e
	B2	В	0.5166	0.3509	0.125	1	8	g
	B3	В	0.25	0.4132	0.2677	1	4	e

	B4	В	0.4148	0.25	0.3559	1	4	f	
	B5	В	0.5135	0.3475	0.625	1	8	g	
	B6	В	0.25	0.4629	0.625	1	4	e	
	B7	В	0.4148	0.25	-0.1059	1	4	f	
	N1	Ν	0.75	0.4458	0.1607	1	4	e	
	N2	Ν	0.75	0.4458	0.5893	1	4	e	
γ -B ₁₈ N ₄	B1	В	-0.0065	-0.1135	-0.0908	1	6	c	
	B2	В	0.32298	0.21607	-0.0897	1	6	c	
	B3	В	-0.1454	-0.1769	-0.1835	1	6	c	
	B4	В	0.0326	-0.3563	-0.1498	1	6	c	
	B5	В	0.56448	0.1769	-0.1481	1	6	с	
	B6	В	0.3229	-0.1134	-0.0919	1	6	c	
	B7	В	-0.0909	0.3004	-0.0355	1	6	c	
	B8	В	-0.2454	-0.0721	-0.0164	1	6	с	
	B9	В	0.2816	0.4549	-0.0164	1	6	с	
	N1	Ν	-0.1243	0.3339	-0.1221	1	6	c	
	N2	Ν	-0.2196	0.4291	0.0207	1	6	с	
$\delta - B_{18} N_4$	B1	В	-0.0611	0.8750	0.4133	1	8	f	
	B2	В	0.0504	1.0083	0.3509	1	8	f	
	B3	В	0.2243	0.8750	0.4132	1	8	f	
	B4	В	0.2309	0.9574	0.2500	1	8	f	
	B5	В	0.5487	0.0067	0.3475	1	8	f	
	B6	В	0.6065	0.8750	0.4629	1	8	f	
	B7	В	0.0504	0.7417	0.3509	1	8	f	
	B8	В	0.2309	0.7926	0.2500	1	8	f	
	B9	В	0.54875	0.74325	0.3475	1	8	f	
	N1	Ν	0.13365	0.1250	0.4458	1	8	f	
	N2	Ν	0.5622	1.1250	0.4458	1	8	f	
$\epsilon - B_{18}N_4$	B1	В	0.0745	0.2578	0.1250	1	32	h	
	B2	В	0.1250	0.2071	0.3559	1	32	h	
	B3	В	0.0434	0.1250	0.2677	1	32	h	
	B4	В	0.07625	0.4938	0.125	1	32	h	
	B5	В	0.0185	0.6250	0.125	1	16	e	
	N1	Ν	0.0280	0.3750	0.0893	1	32	h	

Таблица 3.

Вычисленные параметры решеток полиморфных модификаций B ₁₄ C ₈ .									
Вещество	Сингония	Простр.	a, Å	b, Å	c, Å	β, град.	Z	d, г/см ³	
		гр.							
α -B ₁₄ C ₈	Мон.	C2/m	9.2650	5.3492	6.1767	109.472	2	2.847	
β -B ₁₄ C ₈	Орт.	Pmmn	5.3793	8.7352	6.1767	-	2	2.831	
$\delta - B_{14}C_8$	Мон.	C2/c	6.1767	10.6987	9.2781	109.472	4	2.843	

80 лет

Таблица 4.

Вещество	Позиция	Элемент	v	v	7	Зана-	фикации Крат-	
Бещество	позиция	Элемент	Λ	У	L	- тості	прат-	Вайкофф
a-B. C.	R1	B	0.1632	0	-0.0611	0.75	<u>1</u>	і
u-D ₁₄ C ₈	C1	C	0.1632	0	0.0611	0.75	-	i
		D D	0.1032	0 2666	0.05045	0.25	+ Q	i
	D_2	В С	0.1009	0.2000	0.05045	0.75	0	J
	C2 D2	C D	0.1009	0.2000	0.03043	0.25	0	J
	D3 C2	D C	0.1632	0	0.2245	0.75	4	1
	C5 D4	C D	0.1052	0	0.2245	0.23	4	1
	B4 D5	B	0	0.1004	0.2331	1	ð 0	J
	BO	В	0.0984	0.2635	0.5492	1	8	J ·
	C4	C	0.1802	0	0.6040	1	4	1
	C5	C	0.2025	0.5	0.1140	1	4	1
_	C6	С	0.2025	0.5	0.5425	1	4	i
β -B ₁₄ C ₈	B1	В	0.25	0.4132	-0.0177	0.75	4	e
	C1	С	0.25	0.4132	-0.0177	0.25	4	e
	B2	В	0.5166	0.3509	0.125	0.75	8	g
	C2	С	0.5166	0.3509	0.125	0.25	8	g
	B3	В	0.25	0.4132	0.2677	0.75	4	e
	C3	С	0.25	0.4132	0.2677	0.25	4	e
	B4	В	0.4171	0.25	0.3581	1	4	f
	B5	В	0.4171	0.25	-0.1059	1	4	f
	B6	В	0.5135	0.3484	0.6250	1	8	g
	C4	С	0.25	0.4302	0.6250	1	4	e
	C5	С	0.75	0.4525	0.1894	1	4	e
	C6	С	0.75	0.4525	0.5606	1	4	e
$\delta - B_{14}C_8$	B1	В	-0.0611	0.875	0.4132	0.75	8	f
	C1	С	-0.0611	0.875	0.4132	0.25	8	f
	B2	В	0.05045	0.0083	0.3509	0.75	8	f
	C2	С	0.05045	0.0083	0.3509	0.25	8	f
	B3	В	0.2243	0.875	0.4132	0.75	8	f
	C3	С	0.2243	0.875	0.4132	0.25	8	f
	B4	В	0.2331	0.9582	0.2500	1	8	f
	B5	В	0.5492	0.0067	0.3485	1	8	f
	B6	В	0.5492	0.7432	0.3485	1	8	f
	B7	В	0.0504	0.7417	0.3509	0.75	8	f
	C4	С	0.0504	0.7417	0.3509	0.25	8	f
	B8	В	0.2331	0.7918	0.2500	1	8	f
	C5	С	0.1656	0.125	0.4522	1	8	f
	C6	C	0.5368	0.125	0.4522	1	8	f
	C7	C	0.5901	0.875	0.4299	1	8	f

Вычисленные параметры решеток полиморфных модификаций B₁₈N₄ приведены в таблице 1, а координаты атомов – в таблице 2. Вычисленные параметры решеток полиморфных модификаций B₁₄C₈ приведены в таблице 3, а координаты атомов – в таблице 4.

Проекция кристаллической решетки α-B₁₈N₄ на плоскость ас приведена на рисунке 1.

Рис.1. Проекция кристаллической решетки α-В₁₈N₄ вдоль оси b.

Орторомбический политип β -B₁₈N₄ получается из α -B₁₈N₄ двойникованием по плоскости, параллельной bc с третьей координатой a = 0.5, зеркальным отражением (т.е. поворотом на 180°). Проекция кристаллической решетки β -B₁₈N₄ вдоль того же направления изображена на рисунке 2.

Решетка γ -B₁₈N₄ получается из α -B₁₈N₄ двойникованием в плоскости, параллельной ab, с третьей координатой с ~ 0.25, поворотом на угол 120°. По этой же плоскости может иметь место интерполитипия между решеткой B₁₄C₈ и обычным карбидом бора B₁₂C₃ = (B₁₁C⁻¹)(CBC⁺¹). Для B₁₈N₄ аналогичная интерполитипия будет с субнитридом бора, для которого в литературе дается состав B₁₃N₂ = (B₁₂)(NBN) [13], но необходимость соблюдения правила Уэйда для устойчивости требует наличия 1/3 незамеченных вакансий в линейной позиции, то есть состава субнитрида

 $B_{12.667}N_2 = (B_{12}^{-2})(NBN^{+3})_{2/3}(N...N)_{1/3}$ со строением, промежуточным между типами B₄C и B₆O. Проекция кристаллической решетки γ -B₁₈N₄ на плоскость аb изображена на рисунке 3.

Рис.2. Проекция кристаллической решетки β-B₁₈N₄ вдоль оси а..

80 лет

Рис.3. Проекция кристаллической решетки у-B₁₈N₄ вдоль оси с.

Рис.4. Проекция кристаллической решетки δ-B₁₈N₄ вдоль оси b.

При другом порядке чередования поворотов в таких плоскостях двойникования получится моноклинный политип ζ-B₁₈N₄, кристаллографические параметры которого пока еще не вычислены.

Решетка δ -B₁₈N₄ (рисунок 4) получается из α -B₁₈N₄ при двойниковании плоскостью, параллельной плоскости ас, с третьей координатой b = 0.25, посредством сдвига в направлении с на 0.5.

Аналогично, решетка ϵ -B₁₈N₄ (рисунок 5) получается из β -B₁₈N₄ при двойниковании плоскостью bc в направлении c.

Рис.5. Проекция кристаллической решетки є-В₁₈N₄ вдоль оси b.

Рисунок 5. Серию особых политипов $B_{18}N_4$ и $B_{14}C_8$ можно построить сдвигом вдоль стержней (икосаэдр) $(B_2)_2(X2-X1-X2)_2$ в плоскости, пересекающей посередине каждую диборановую группу B_2 внутри стержня, если симметрия стержня в данном исходном политипе допускает такой сдвиг. В политипе α - $B_{18}N_4$ такой сдвиг на полпериода возможен в плоскости, параллельной bc, с третьей координатой a = 0,25, в направлении с, что сохраняет моноклинную сингонию (рисунок 6).

Рис.6. Моноклинный особый политип B₁₈N₄, содержащий дельтаэдрические ленты.

80 лет

В β-В₁₈N₄ такой сдвиг на полпериода возможен в плоскости, параллельной ас, с третьей координатой b = 0,25, в направлении с. В политипах δ-B₁₈N₄ и ε-B₁₈N₄ также возможны аналогичные сдвиги. В этих особых политипах (рисунок 6) вместо клозо-икосаэдров B₁₂⁻² или B₁₀C₂ присутствуют бесконечные невыпуклые ленты из сопряженных по ребрам с исходными мостиковыми водородами арахно-декаборановых анионов В₁₀H₁₄ 2 карборановых аналогов. При анализе резонансных форм или их дельтаэдрической ленты (рисунок 7) установлено, что она может накапливать биполяроны до 1 шт. на 1 формульную единицу с повышением количества этом резонансных форм. при при обоих зарядах отсутствуют последовательности резонансных форм, переносящих электроны вдоль цепи. Подробно методология анализа делокализации электронов в протяженных дельтаэдрических системах по резонансным формам изложена в работе [14].

Рис.7. Возможность и способы делокализации электронов в дельтаэдрических лентах особых политипов B₁₈N₄ или B₁₄C₈.

Рисунок 7. Обычный состав формульной единицы особых политипов В₁₈N₄ = {B₁₆⁻²}(NBN⁺¹)₂, а биполяронный или требует вхождения дополнительных атомов азота в дельтаэдрическую ленту, делая ее азаборановой {B₁₅N⁻²}(NBN⁺¹)₂ = B₁₇N₅ и приводя к появлению существенно энергоемких связей N-N, или требует появления в структуре углерода и слегка энергоемких связей C-N с формулой {B₁₆⁻⁴}(NCN⁺²)₂ или {B₁₄C₂⁻²}(NBN⁺¹)₂ = B₁₆C₂N₄.

.

Заключение

Таким образом, нами установлено, что в системах В-С и В-N возможно существование метастабильных соединений составов B₁₈N₄ и В₁₄С₈, почти лишенных геометрических напряжений и не содержащих энергоемких атомов, присущих структурам известных низших соединений систем. бинарных Такие метастабильные этих соединения ΜΟΓΥΤ множественно двойниковаться по всем трем направлениям и способны к интерполитипии с известными фазами своих бинарных систем. относящимися к структурному семейству карбида бора. Предварительно установлено, что могут существовать и родственные соединения других составов, требующие дальнейших исследований. Такие метастабильные соединения могут иметь очень высокие температуры разложения по аналогии с тем, что при термолизе аммониевых и алкиламмониевых солей анионов В₁₂Н₁₂⁻² и В₁₀Н₁₀⁻² были получены структурно родственные карбиду бора заведомо при атмосферном давлении метастабильные субнитрид ~B₁₁N и карбонитрид бора $\sim B_{10}C_2N_2$, термостойкие вплоть до 1800°C [15, 16]. Значит, для геометрически сконструированных нами соединений с меньшим содержанием бора тоже могут найтись подходящие прекурсоры и условия синтеза.

80 лет

Литература

- 1. K. Shirai, Jap. J. Appl. Phys. 56, 05FA06 (2017)
- 2. Ю. Б. Кузьма. Кристаллохимия боридов. Львов: Вища школа. Изд-во при Львов. Унте, 1983, 164 с.
- 3. G. Akopov, M. T. Yeung, R. B. Kaner. Adv. Mater. 2017, 1604506
- 4. Н. Т. Кузнецов, К. А. Солнцев, А. В. Агафонов. Координационная химия, 1979, т. 5, вып. 9, с. 1297
- 5. Y.-F. Shen, C. Xu, L.-J. Cheng. RSC Adv., 2017, 7, 36755
- D.-H. Wang, H.-Y. Zhou, C.-H. Hu, Y. Zhong, A. R. Oganov and G.-H. Rao, Phys. Chem. Chem. Phys. 2017, 19, 8471
- 7. https://m.facebook.com/story.php?story_fbid=10155004241873164&id=774308163&ref=bookmarks
- 8. HyperChemTM Release 8.0.8 for Windows Molecular Modeling System, Copyright© 1995-2009 Hypercube, Inc.
- 9. Р. Граймс. Карбораны. Изд-во «Мир», Москва, 1974. (R. N. Grimes. Carboranes. Academic Press New York and London, 1970)
- И.В. Дуденков, К.Ю. Жижин, А.С. Чернявский, С.В. Кацер, Л.В. Гоева, В.С. Сергиенко, К.А. Солнцев, Н.Т. Кузнецов. Синтез и кристаллическая структура 1,7-(NH₃)₂B₁₂H₁₀·0.5H₂O. Журнал неорганической химии, 2000, Т.45, №12, С.2016-2019
- 11. T. Peymann, C.B. Knobler, S.I. Khan, M.F. Hawthorne. Inorg. Chem. 2001, 40, 1291-1294.

1938 UMETTOPAH

ИМЕТ РАН

80 лет

- 12. Mercury 3.8 (Build RC2) Copyright CCDC 2001-2016
- 13. V. L. Solozhenko, O. O. Kurakevich, J. Phys.: Conf. Series 121 (2008) 062001.
- 14. Дуденков И.В., Солнцев К.А. Журнал неорганической химии, 2009, том 54, № 7, с. 1166
- 15. Иванов С.В. Дисс. ... к. х. н., 1993
- Иванов С.В., Малинина Е.А., Солнцев К.А., Кузнецов Н.Т. // Коорд. химия. 1992. Т. 18. № 4. С. 394.